Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38517721

RESUMEN

The primary goal of rehabilitation for individuals with lower limb amputation, particularly those with unilateral transfemoral amputation (uTFA), is to restore their ability to walk independently. Effective control of the center of pressure (COP) during gait is vital for maintaining balance and stability, yet it poses a significant challenge for individuals with uTFA. This study aims to study the COP during gait in individuals with uTFA and elucidate their unique compensatory strategies. This study involved 12 uTFA participants and age-matched non-disabled controls, with gait and COP trajectory data collected using an instrumented treadmill. Gait and COP parameters between the control limb (CL), prosthetic limb (PL), and intact limb (IL) were compared. Notably, the mediolateral displacement of COP in PL exhibited significant lateral displacement compared to the CL from 30% to 60% of the stance. In 20% to 45% of the stance, the COP forward speed of PL was significantly higher than that of the IL. Furthermore, during the initial 20% of the stance, the vertical ground reaction force of PL was significantly lower than that of IL. Additionally, individuals with uTFA exhibited a distinct gait pattern with altered duration of loading response, single limb support, pre-swing and swing phases, and step time. These findings indicate the adaptability of individuals with uTFA in weight transfer, balance control, and pressure distribution on gait stability. In conclusion, this study provides valuable insights into the unique gait dynamics and balance strategies of uTFA patients, highlighting the importance of optimizing prosthetic design, alignment procedures, and rehabilitation programs to enhance gait patterns and reduce the risk of injuries due to compensatory movements.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Amputados/rehabilitación , Fenómenos Biomecánicos , Marcha/fisiología , Caminata/fisiología , Amputación Quirúrgica
2.
R Soc Open Sci ; 11(3): 231854, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545618

RESUMEN

This study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h-1). The study recruited 10 non-disabled individuals using TFSim and 10 individuals with unilateral TFAmp using a transfemoral prosthesis. Data were collected using an instrumented treadmill with built-in force plates, and subsequently, the GRFs and spatio-temporal parameters, as well as their asymmetry ratios, were analysed. When comparing the TFSim and TFAmp groups, no significant differences were found among the gait parameters and asymmetry ratios of all tested metrics except the vertical GRFs. The TFSim may not realistically reproduce the vertical GRFs during the weight acceptance and push-off phases. The structural and functional variations in prosthetic limbs and components between the TFSim and TFAmp groups may be primary contributors to the difference in the vertical GRFs. These results suggest that TFSim might be able to emulate the gait of individuals with TFAmp regarding the majority of spatio-temporal and GRF parameters. However, the vertical GRFs of TFSim should be interpreted with caution.

3.
Prosthet Orthot Int ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38330181

RESUMEN

Jumping is involved in a wide range of sports and activities, and foot orthoses (FO) are suggested to enhance performance and prevent injury. The aim of this systematic review was to investigate whether using FO with different modifications affects jump landing biomechanics and improves performance in healthy individuals. The search strategy included 7 databases that identified 19 studies. The study quality was evaluated using a modified Downs and Black index. The primary outcome measures were joint kinematics, kinetics, muscle activity, vertical jump height, and horizontal jump distance. Our findings indicated that incorporating arch support with a rearfoot post and softer forefoot region into FO may improve several biomechanical variables during jump landing activities. Improvements in vertical ground reaction force loading rates, knee and ankle kinematics, and muscle cocontraction during jumping with FO could enhance jumping performance. In addition, improvements in hip, knee, ankle, and tibial kinematics and vertical ground reaction force loading rates during landing could reduce impact forces and related injuries. Although a limited number of studies have addressed the effects of FO on vertical jump height and horizontal jump distance, inserting such FO inside shoes with optimum bending stiffness could facilitate jumping performance. A rigorous exploration of the effect and mechanism of FO designs on jumping performance could benefit jumping-related activities and prevent ankle and knee injuries.

4.
Gait Posture ; 109: 240-258, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367456

RESUMEN

BACKGROUND: Foot orthoses (FOs) are often prescribed by clinicians to treat foot and ankle conditions, prevent running injuries, and enhance performance. However, the lack of higher-order synthesis of clinical trials makes it challenging for clinicians to adopt an evidence-based approach to FOs' prescriptions. RESEARCH QUESTION: Do FOs with different modifications alter lower extremity running kinematics and kinetics? METHODS: A systematic search of seven databases was conducted from inception to February 2023. The analysis was restricted to healthy adults without foot musculoskeletal impairments and studies that compared the FOs effects with the controls. The methodological quality of the 35 studies that met the eligibility criteria was evaluated using the modified Downs and Black checklist. The random effects model estimated the standardized mean difference (SMD) with 95% confidence intervals and effect sizes. Sub-group analyses based on FOs type were performed to assess the potential effects of the intervention. RESULTS: Our findings indicated that both custom and off-the-shelf arch-support FOs reduced peak plantar pressure at the medial heel (SMD=-0.35, and SMD=-1.03), lateral heel (SMD=-0.50, and SMD=-0.53), and medial forefoot (SMD=-0.20, and SMD=-0.27), but increased plantar pressure at the mid-foot (SMD=0.30, and SMD=0.56). Compared with the controls, significant increases (SMD=0.36) in perceived comfort were found with custom FOs. A reduction (SMD=-0.58) in initial ankle inversion was found when a raised heel cup was integrated with arch-support FOs. A medial post integrated with arch support exhibited a reduced ankle (SMD=-1.66) and tibial (SMD=-0.63) range of motion. Custom FOs, however, unfavorably affected the running economy (SMD=-0.25) and perceived exertion (SMD=0.20). SIGNIFICANCE: Although FOs have been reported to have some positive biomechanical effects in healthy populations without musculoskeletal impairments or running-related issues, they need to be optimized and generalized to achieve better running performance and prevent injury.


Asunto(s)
Ortesis del Pié , Adulto , Humanos , Fenómenos Biomecánicos , Extremidad Inferior , Tobillo , Articulación del Tobillo
5.
Disabil Rehabil ; 46(3): 464-477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36710007

RESUMEN

PURPOSE: To determine the effects of ankle-foot orthoses (AFO) on step-based physical activities in individuals with neurological, orthopaedic, or cardiovascular disorders. METHODS: Electronic searches of databases such as Scopus, PubMed, Web of Science, Embase, ProQuest, Cochrane Library, and EBSCO were conducted. Two evaluators independently searched with keywords focusing on step-based physical activities, and either articulated or non-articulated AFO. Study quality was assessed using a modified Downs and Black quality scale. RESULTS: Eleven studies that met the inclusion criteria were selected, including four being classified as good, four as fair, and three as poor in quality. The majority of these trials found no significant effects of AFO on step activities. Only a few studies reported improvements in step counts and active times in step activity with a limited to moderate level of evidence. Subjective evaluations such as user satisfaction, and physical functionality during step activity, on the other hand, showed substantial changes with the use of AFO interventions, although there was no evidence of improvement in the quality of life. CONCLUSIONS: Although the AFO did not seem to have a substantial effect on step activity, it appeared to play a vital role in improving the patient satisfaction level of step activity.IMPLICATIONS FOR REHABILITATIONAnkle-foot orthoses (AFO) may not significantly affect the step activity of individuals with impaired ankle-foot complex.AFO may enhance patient-reported satisfaction, physical functioning, participation, and fatigue level during step activity.The patient's perception that the AFO is beneficial is in contrast to objective data showing no significant increase in real-world activity.


Asunto(s)
Tobillo , Ortesis del Pié , Humanos , Articulación del Tobillo , Calidad de Vida , Satisfacción del Paciente , Fenómenos Biomecánicos , Marcha
6.
Front Bioeng Biotechnol ; 10: 1041060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36727041

RESUMEN

The asymmetrical gait of individuals with unilateral transfemoral amputation has been well documented. However, there is not a wealth of investigation into asymmetries during the double limb stance depending on whether the intact or prosthetic limb is leading. The first aim of this study was to compare ground reaction forces during the double limb stance of individuals with unilateral transfemoral amputation depending on whether their intact (initial double limb stance) or prosthetic (terminal double limb stance) limb was leading. The second aim of this study was to compare the asymmetry ratio of ground reaction forces during the double limb stance between individuals with and without unilateral transfemoral amputation. Thirty individuals, fifteen with unilateral transfemoral amputation and fifteen who were able-bodied, were recruited for this study. Each individual walked on an instrumented treadmill for 30 s at eight different speeds, ranging from 2.0 km/h to 5.5 km/h with .5 km/h increments. Ground reaction force parameters, temporal parameters, and asymmetry ratios of all parameters were computed from the data collected. The appropriate statistical analyses of all data based on normality were conducted to investigate the aims of this study. Significant main effects of speed, double limb stance, and their interactions were found for most parameters (p < .01 or p < .05). Individuals with unilateral transfemoral amputation spent a longer duration in terminal double limb stance than initial double limb stance at all tested speeds. They also experienced significantly higher peak vertical ground reaction force during initial double limb stance compared to terminal double limb stance with increasing walking speed. However, during terminal double limb stance, higher anteroposterior ground reaction force at initial contact was found when compared to initial double limb stance. Significant differences between individuals with unilateral transfemoral amputation and able-bodied individuals were found in asymmetry ratios for peak vertical ground reaction force, anteroposterior ground reaction force, anteroposterior shear, and mediolateral shear at all tested speeds. Asymmetrical loading persists in individuals with unilateral transfemoral amputation during double limb stance. Increasing walking speed increased ground reaction force loading asymmetries, which may make individuals with unilateral transfemoral amputation more susceptible to knee osteoarthritis or other musculoskeletal disorders. Further study is necessary to develop ideal gait strategies for the minimization of gait asymmetry in individuals with unilateral transfemoral amputation.

7.
Kurume Med J ; 66(4): 185-193, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34690204

RESUMEN

This study investigated the feasibility of combined padded metatarsal cup on plantar pressures and stress distribution in the bone alignment of female foot with high heeled footwear during balanced standing. The aim of this study is to redistribute the plantar pressure away from the medial side of the forefoot. A combined padded metatarsal cup (CPMC) was developed from medium soft ethylene vinyl acetate (MSEVA) and very soft ethylene propylene diene monomer (VSEPDM) neoprene sponge. The participants of three categories were selected for the study. The peak plantar pressure and a radiographic assessment of foot musculoskeletal alignment were carried out. The results showed that the magnitude of load on medial forefoot area could be effectively reduced by inserting joint of soft materials on metatarsal region. Hence load on hallux could also be reduced satisfactorily which could resist the hallux valgus deformity. A comparison of conventional system and jointing materials separately with the developed prototype was made and found that the developed prototype of CPMC provides more relaxation of plantar pressure and musculoskeletal safety and confirms more comfort on hypothesis test. The concept of combined padded metatarsal cup should therefore be considered to help in designing musculoskeletal safety footwear.


Asunto(s)
Pie/fisiología , Antepié Humano/fisiología , Hallux Valgus , Huesos Metatarsianos/fisiología , Zapatos , Soporte de Peso/fisiología , Etilenos , Femenino , Humanos , Huesos Metatarsianos/diagnóstico por imagen , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...